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In the numerical analysis of the eigen behavior of huge liquid-storage tanks, treatment of
large-scale matrices becomes a burden owing to the hydrodynamic interaction between two
di!erent media, structure and liquid. In order to overcome such a problem, it is classical to
split the dynamic system into two separate problem regions, the structure and the liquid, by
utilizing the mass-adding technique. In general, the eigenbehavior of interior liquid is
characterized by the sloshing mode while that of the structure by the bulging mode, and
furthermore the two modes exhibit a weak coupling. Based upon this weak coupling, the
structure deformation to the sloshing mode and the liquid free-surface #uctuation to the
bulging mode have been neglected in the classical added-mass computation. This paper is
concerned with the re"nement and the assessment of classical interaction modelling by
including both neglected e!ects. In order to estimate the accurate mass added to the
structure, we re"ne the classical procedure by re#ecting the liquid free-surface #uctuation.
On the other hand, we qualitatively and quantitatively analyze the additional e!ect by the
structure deformation onto the classical rigid-tank sloshing model. Through the numerical
experiments carried out with a representative cylindrical liquid-storage tank, we illustrate
our theoretical results.
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1. INTRODUCTION

In the analysis of the dynamic behavior of liquid-storage tanks, the most important step is
to appropriately model the hydrodynamic interaction between two di!erent media,
structure and liquid. By the way, in most cases of numerical simulations for such problems,
approximations of whole state variables in governing equations for motions of the structure
and the liquid end up with large-scale numerical matrix systems. To resolve such a problem,
a technique called mass-adding has been widely employed in most engineering applications
so that large-scale dynamic interaction problems can be reduced to two separate dynamic
problems.

However, it is obvious that the reliability of constructed decoupled problems depends
de"nitely on the accuracy of calculated added-masses. Many investigators studied the
numerical techniques for calculating accurate added-masses of liquid. As a result, the basic
idea of calculating added-mass is well known as follows; starting from an abstract pressure
"eld in the liquid regions, one estimates the equivalent mass added to the structure by
virtually equating the pressure force to the equivalent acceleration force acting on the
structure.

Among the research on theoretical estimation of added-masses are those by Gupta [1],
Chopra and Hall [2], Housner [3] and Haroun [4, 5]. On the other hand, Zienkiewicz et al.
0022-460X/01/050995#18 $35.00/0 ( 2001 Academic Press
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[6], Tedesco et al. [7, 8] and Rajasankar et al. [9] presented "nite element approximations
for added-mass matrices. In addition, Brebbia et al. [10] and Khai [11] studied the
application of "nite and boundary element methods to the calculation of added-masses.
Recently, a study on the added-mass of viscous #uids has been reported by Conca
et al. [12].

As is widely known, the eigenbehavior of liquid-storage tanks exhibits two distinguished
eigenmodes, the sloshing mode and the bulging mode. The former is related to the vertical
#uctuation of the liquid free surface, while the latter characterizes the structure deformation.
Since the coupling between these two modes is weak, the e!ect of liquid free-surface sloshing
on the structure deformation and the e!ect of structure deformation on the liquid motion
have been traditionally excluded. By excluding both the e!ects, the modal analysis of
interaction systems can be easily separated, according to the usual mass-adding technique
[4, 3, 9], i.e., the classical separate modal analysis models. The framework for fully coupled
numerical formulations is well established in a book by Morand and Ohayon [13]. In the
coupled formulation, while it requires complicated and expensive numerical treatment, both
e!ects may be easily included.

In this study, we aim at the assessment of classical simpli"ed separate interaction models
by including both the neglected e!ects. For the added-mass matrix of the separated
structure region, we re"ne the classical numerical procedure so that it accounts for the
liquid free-surface #uctuation. With the re"ned procedure, we compute the spatial
distributions of nodal added-masses and corresponding natural frequencies. By comparing
the numerical results obtained by the classical and the re"ned procedures, we intend to
examine the additional e!ect by the liquid free-surface #uctuation on the bulging mode.
In addition, we derive the numerical formulation that re#ects the structure deformation.
With the derived numerical formulation, we estimate natural frequencies for various
combinations of major problem parameters. As a model problem, we consider the
horizontal eigenbehavior, in which the liquid free-surface #uctuation and the structure
bending deformation are most considerable. Through the comparison of natural
frequencies obtained by the classical and the present formulations, we investigate the
parametric e!ect of structure deformation on the sloshing mode.

2. EIGENCHARACTERISTICS OF LIQUID-STORAGE TANKS

Referring to Figure 1, let us consider the horizontal eigencharacteristics (in the
x direction) of a cylindrical tank containing liquid, in which the structure deformation and
the liquid pressure are coupled at the liquid}structure interface. Figure 2 illustrates the
dominance of two distinguished eigenmodes, the sloshing and the bulging modes, with
respect to the liquid free-surface #uctuation height g along the natural frequency and the
participating liquid mass portion respectively. In relatively lower-frequency range, the
coupled system exhibits a dominance of the free-surface motion (i.e., the sloshing mode)
while the structure deformation dominates as the natural frequency becomes higher (i.e., the
bulging mode). In addition, the two modes show quite weak coupling, and hence separate
dynamic analysis has been carried out for many cases. Furthermore, it has been found
as depicted in Figure 2, that a certain amount of liquid m

s
in the upper region takes

part in the free-surface motion, while the rest of the liquid m
b
contributes to the structure

deformation [7, 8].
This implies that the liquid mass interacting with the structure is partial and furthermore

its spatial distribution is not uniform.
From the illustration showing the frequency-wise dominance, one can infer that the e!ect

of liquid free-surface #uctuation on the bulging mode decreases as the natural frequency



Figure 1. A liquid-storage cylindrical tank and its geometry de"nition.

Figure 2. Frequency-wise and liquid-region-wise dominance in the eigenbehavior.
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increases, while that of structure deformation on the sloshing mode increases in proportion
to the increase of natural frequency. On the other hand, from the physical point of view, one
can imagine that the intensity of interaction caused by both additional e!ects is a function
of the relative sti!ness of the structure to the interior liquid. Therefore, the suitability of
classical interface modeling for the construction of two equivalent separate dynamic
systems is frequency and problem dependent.

3. FLUID}STRUCTURE INTERACTION PROBLEM

For the theoretical analysis of #uid}structure interaction problems, let us consider
a cylindrical liquid-storage tank represented in Figure 1, where X3R3 deotes an open

bounded #uid domain with piecewise smooth boundary LX"S
f
XS

i
. Here, S

f
denotes

a free surface and S
i
indicates the boundary region which is in contact with the structure.

A storage cylinder is de"ned by X
s
3R3 with its smooth boundary LX"C

D
XC

N
, where

C
D

is the displacement boundary region while the traction boundary region denoted by
C
N

is composed of #uid-structure interface S
i
and the other parts subjected to external

traction (but, we here assume no external loading).
As a preliminary step of our theoretical study, we now record two sets of "eld equations

governing the dynamic motions of the structure and the liquid respectively.
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3.1. FOR THE STRUCTURE REGION

By denoting u as continuous triple-vector dynamic displacement "elds of the structure,
we have equations governing the dynamic motion of the structure and the corresponding
boundary conditions given by

p
ij
(u)

, j
!cuR

i
#f

i
"o

s
uK
i
, in X

s
](0, t)

p
ij
ns
j
"!p

i
, on S

i

u
i
"0, on C

D
H, i, j"x, y, z , (1)

where o
s
, c and f

i
are the density, damping coe$cient and body force components,

respectively, and p
ij

denote Cauchy stress components. Furthermore, ns
j

indicate
components of outward unit vector normal to the structure and p

i
are hydrodynamic

pressure components (viewing p as a force vector in Cartesian co-ordinates) acting on the
structure.

The dynamic displacement "eld is related to stress tensor through the generalized
Hooke1s law and strain-displacement relations.

3.2. FOR THE LIQUID REGION

For an interior liquid, we assume that the #ow is incompressible and irrotational (i.e.,
curl-free; +]v"0 with v denoted as continuous triple-vector velocity "elds). Furthermore,
we make an additional assumption of inviscid #ow. The reader may refer to Conca et al.
[12] for a recent analytic study on the viscous #uid}structure interaction problems. For the
ideal #ow, we have a velocity potential function u(x; t) satisfying

u (x; t) : v"+u . (2)

Denoting the density of the interior liquid by o and neglecting its body force, we have
Euler equations, the continuity equation and boundary conditions:

ov5 "!+p

+ ) v"0 H, in X](0, t],

v ) nf"u5 ) nf , on S
i
, (3)

v ) nf"!uK /g, on S
f
.

We note here that the boundary condition speci"ed on S
f

is a kinematic condition of the
free-surface derived from the Bernoulli equation [14], but it vanishes when the free-surface
#uctuation is neglected.

Taking spatial integration to Euler equations together with the de"nition of the velocity
potential function, we have a relation between the hydrodynamic pressure and the velocity
potential function

p(x; t)"!ouR #C(t) (4)

where C(t) is a time-dependent constant. In particular, for harmonic #uid motions starting
from a state of rest, it vanishes.
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4. EQUIVALENT MASSES ADDED TO THE STRUCTURE

We now present the re"nement of classical numerical procedure for the added-mass
computation. As mentioned earlier for the basic idea of added-mass, we need to start with
an abstract hydrodynamic pressure "eld in the liquid region. So, we transform the previous
boundary-value problem (3) into an alternative form expressed in terms of the
hydrodynamic pressure:

+ 2p"0, in X](0, t]

Lp/Lnf"u2p/g, on S
f
, (5)

Lp/Lnf"!ovR
n
, on S

i
,

where vR
n
indicates the normal acceleration of the liquid (then for the structure, uK

n
"!vR

n
).

In the above formulation, the ¸aplace equation is obtained from the substitution of Euler
equations into the continuity equation. The converted boundary condition on S

i
is obtained

by taking time di!erentiation to the original boundary condition in equation (3) together
with the relation (4)

Lp/Lnf"ouG/g . (6)

Next, for harmonic #uid motions, we have

uG"!u2uR . (7)

Then, "nally we arrive at the converted form.

4.1. FINITE ELEMENT APPROXIMATIONS OF ADDED-MASS MATRICES

Applying the weighted residual formulation to equation (5) and using the divergence
theorem, we obtain the following variational formulation:

For given uK
n
3¸2 (S

i
), "nd p3H1(X) such that

(8)

PX

+q )+p dX"oP
Si

quK
n
ds#

u2

g P
sf

qpds, ∀q3H1(X) ,

where ¸2(S
i
) is a square-integrable scalar function space over S

i
while H1(X) a Hilbert

space [15].
For "nite element approximations, we express the global "nite element approximations

ph , uK h
n

and qh in terms of "nite element basis function matrices U and the corresponding
nodal vectors p6 , u6G

n
and q6 such that

ph"U
f
p6 , uK h

n
"U

s
u6G
n
, qh"U

f
q6 , (9)

where the subscripts &&f '' and &&s'' refer to the liquid and the structure regions, respectively.
Substituting equation (9) into the variational formulation (8), we obtain

H3 p6 "Bu6G
n
#u2mp6 (10)



1000 J.-R. CHO AND J.-M. SONG
with

B"oP
Si

UT
s
U

f
ds, H3 "PX

(+U
f
)T(+U

f
) dX, m"

1

g P
Sf

UT
f
U

f
ds . (11)

The second term on the RHS of equation (10) is due to the inclusion of the liquid
free-surface #uctuation, but it has been neglected in the classical simpli"ed procedure.

Denoting H3 !u2m by H(u) and separating "nite-element nodes of hydrodynamic
pressure p6 into ones on the liquid}structure interface S

i
(denoted by p6

s
) and the rest (denoted

by p6
f
), we rewrite equation (10) as

H
ss

H
sf

H
fs

H
ff

C
p6
s

p6
f
D" C

B 0

0 0 D C
u6G
n

0 D . (12)

Comment 1. The problem becomes frequency dependent when the free-surface sloshing is
included, which leads to the frequency-dependent formulation for added-mass matrices.

After static condensation, the nodal vector p6
s
, of hydrodynamic pressure acting on the

structure is given by

p6
s
"H~1

s
Bu6G

n
(13)

H
s
"H

ss
!H

sf
H~1

ff
H

fs
. (14)

The next step for the added-matrix is a straightforward application of the principle of
virtual work. Referring to Figure 3, let us denote by R

n
a virtually equivalent normal force

acting on the structure and by dw
n

a virtual normal displacement of the structure
respectively. Then the virtual work done by R

n
in a "nite element approximation form is

expressed by

d="P
Si

dw
n
R

n
ds"dw6 T

n
MR

n
N , (15)

where MR
n
N is "nite element load vector to be determined. On the other hand, the virtual

work done by hydrodynamic pressure is determined as follows:

dW"!P
Si

dw
n
ph
s
ds
Figure 3. Virtually equivalent normal force R
n
and virtual normal displacement dw

n
.
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"!P
Si

(U
s
dwN

n
)T(U

f
p6
s
) ds

(16)

"!dw6
nGP

Si

UT
s
U

f
dsHp6

s

"dw6
n
(!o~1BTp6

s
),

where we used to symmetry of the matrix B in equation (11). Equating equations (15) and
(16) we have the load vector MR

n
N of virtually equivalent normal force given by

MR
n
N"!o~1BTp6

s
"!o~1MBTH~1

s
BNu6G

n
. (17)

The application of "nite element approximation to the problem (1) yields the usual matrix
form of dynamic motion of the structure

[M]u6G#[C]u60 #[K]u6 "MF
b
N#MF

p
N , (18)

where MF
b
N and MF

p
N, respectively, denote load vectors by body force and hydrodynamic

pressure. We note here that the load vector MF
p
N is constructed in Cartesian co-ordinates

while MR
n
N in normal co-ordinate. So, we de"ne the co-ordinate transformation operator

T :R3PR such that ∀v3R3

Tv"v
n
3R, TTT"I . (19)

Then we have

MF
p
N"TTMR

n
N

"!o~1TTMBTH~1
s

BNTu6G (20)

"!o~1QTH~1
s

Qu6 G

with a de"nition of Q"BT.
We next add MF

p
N to the "rst term on the left hand side (LHS) of equation (18), then

[M#M
add

]u6G#[C]u65 #[K]u"MF
b
N , (21)

[M
add

]"o~1[QTH~1
s

Q](u) . (22)

Thus, we "nally have the numerical procedure for the frequency-dependent added-mass
matrix which accounts for the liquid free-surface sloshing.

5. STRUCTURE DEFORMATION ONTO THE LIQUID SLOSHING

For the eigenbehavior analysis of interior liquids, traditionally the structure deformation
has been neglected (i.e., the rigid-tank sloshing model). In this section, we present the "nite
element approximation for the qualitative and quantitative investigation of the e!ect of
structure deformation on the sloshing mode.
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For our theoretical study, we start with an alternative form of equation (5) expressed in
terms of the velocity potential function:

+2u"0, in X](0, t],

(23)

+u ) nf"G
!u~ /g, on S

f
,

u5 ) nf, on S
i
,

where the structure deformation is re#ected through the boundary condition on the
liquid}structure interface S

i
. The variational formulation corresponding to the problem (23)

is as follows:

For given uR
n
3¸2 (S

i
), "nd u3H1 (X) such that ∀t3H1(X)

(24)

PX

+u )+t dX#

1

g P
Sf

uK tds"P
Si

uR
n
t ds .

With the previously de"ned "nite element basis function matrices, we express the trial and
the test velocity potentials and the structure normal velocity in matrix forms such that

uh"U
f
uN , uR h

n
"U

s
u65
n
, th"U

f
tN . (25)

Substituting these approximations into the above problem (24) and separating "nite
element nodes of the velocity potential in the liquid region into ones (denoted by uN

R
) on the

liquid free-surface and the rest (denoted by uN
I
), we have

M
RR

0

0 0 G
uN K
R

uN K
I
H#C

H
RR

H
RI

H
IR

H
II
D G

u6
R

u6
I
H"1

o C
B
RR

B
RI

B
IR

B
II
D u65 *

n
. (26)

with the de"nition of matrices in equation (11) together with

M
RR

"

1

gP
Sf

UT
f
U

f
ds . (27)

In equation (26), the nodal velocity vector u65 *
n

is an extension of u65
n
from the liquid}structure

interface to the whole liquid region, hence most components in the enlarged matrix B are
zeros.

In order to correlate u65
n
with the velocity potential, we return to the "eld equations (1) for

the structure region. For the purpose of eigenanalysis, we exclude the damping and the
body force terms. Then, the "nite element approximation of the eigenbehavior of the
structure leads to

[M]u6 K#[K]u6 "MF
p
N , (28)

MF
p
N"AP

Si

UT
s
U

f
dsB p6 c

s
"

1

o
BT~1p6

s
, (29)

where p6 c
s
is a load vector in Cartesian co-ordinates.
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Applying the mass-lumping technique to the mass matrix and separating "nite element
nodes of the structure displacement into ones on the liquid}structure interface (denoted by
u6
n
) and the rest (denoted by u6

c
), equation (28) becomes

C
K

nn
!u2M

nn
K

nc

K
cn

K
cc
!u2M

cc
D G

u6
n

u6
c
H"1

o C
B 0

0 0 D G
T~1p6

s

0 H . (30)

After static condensation, we have

u6
n
"o~1[(K

nn
!u2M

nn
)!K

nc
(K

cc
!u2M

cc
)~1K

cn
]~1BTTp6

s
(31)

"o~1S~1(u)TTp6
s
.

Using the relation (4) and taking the co-ordinate transformation T de"ned earlier, we
obtain the nodal vector u6

n
of the structure part interfacing with the liquid:

u6
n
"!TS~1(u)TTuNR

n
. (32)

Here, S~1 (u) denotes [)]~1 B on the right-hand-side (RHS) of equation (31).
In order to extend the nodal vectors u6

n
and uN R

n
to uN *

n
and uN containing whole "nite element

nodes in the liquid region, we introduce a matrix operator D : S
i
PX such that ∀a6

n
on S

i

Aa6
n
"AD G

a6
R

a6
I
H and ADT G

a6
R

a6
I
H"Aa6

n
, (33)

where D is composed of 0 and 1 and A arbitrary matrix multiplied by a6
n
. Then, we have

u65 *
n
"Du65

n
"!LS~1LTG

u6K
R

u6K
I
H (34)

where L"DT. Substituting u65 *
n

into equation (26) and taking matrix multiplication, we
obtain

M
RR

0

0 0 G
uKN
R

uKN
I
H#C

H
RR

H
RI.

H
IR

H
II
D G

u6
R

u6
I
H"!C

M)
RR

M)
RI

M)
IR

M)
II
D G

uKN
R

uKN
I
H . (35)

From the above equation, we see that the e!ect of structure deformation is converted to
the additional mass matrix [M) ]. Thus, we have the "nal numerical form describing the
#exible-tank sloshing model (as opposed to the classical rigid-tank sloshing model):

C
M

RR
#M)

RR
M)

RI

M)
IR

M)
II
D G

uKN
R

uKN
I
H#C

H
RR

H
RI

H
IR

H
II
D G

u6
R

u6
I
H"G

0

0 H . (36)

Comment 2. During the numerical procedure, the displacement boundary condition
speci"ed on C

D
in equation (1) is treated by applying the penalty and penalty method to the

sti!ness matrix [K].
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Next, we qualitatively analyze the e!ect of structure deformation on the sloshing mode,
to a certain extent. Above all, it is worth noting that the two de"ned transformations T and
D are magnitude-conserving operators.

Let us compare M
RR

de"ned in equation (27) and M) obtained through equations
(26)}(35). Neglecting roughly the mass terms in equations (31), due to the low sloshing-mode
natural frequencies, together with the de"nition of B, we see that the term (o/E) is multiplied
in u65 *

n
(E is the Young's modulus of structures). Thus, referring to the de"nition of M

RR
and

two equations, (26) and (31), we recognize that M) involves the multiplication of the term
(og/E) compared to M

RR
. For most engineering liquid-storage tanks, this quantity is

remarkably small. As an example, for a Ni}Cr steel LNG-storage tank (E"7]105 kgf/cm2

and og"4)5]10~3 kgf/cm3), og/E is of the order of 10~8}10~9.
On the other hand, liquid-storage tanks are ultra-thin structures, so the deformation is

approximated well with the classical thin shell theories such as the Koiter shell theory.
According to thin shell theories [16], the sti!ness matrix is split into three; the bending
sti!ness K

b
, the membrane sti!ness K

m
and the shear sti!ness K

s
. The bending sti!ness is

proportional to h3 while the other two are proportional to h. Since the deformation
behavior in horizontal eigenmotions of structures is bending-dominated, the sti!ness matrix
K is characterized by h3 even though it is related to the shape, boundary conditions and
material properties of structures.

Synthesizing the above arguments, we conclude that the relative magnitude of the
converted mass matrix by the structure deformation is related to three major parameters as
follows:

DM) D/DM
RR

DJ(og/E, 1/h3) . (37)

Through numerical experiments, we will parametrically investigate the e!ect of structure
deformation on the sloshing mode along with the three parameters o, E and h.

6. NUMERICAL EXPERIMENTS

To illustrate the theoretical results discussed so far, we simulated the horizontal vibration
problem of a cylindrical tank of uniform thickness h, as shown in Figure 1. The simulation
data are given in Table 1, where the three parameters, the Young's modulus E, the liquid
density o and the structure thickness h are also taken as variables for the parametric
investigation.

For the numerical simulation, we developed a test FEM program according to our
theoretical results, in which we combined pre- and postprocessor modules of ANSYS
commercial FEM software for mesh construction and visualization. We constructed "nite
TABLE 1

Material and geometry data for the numerical simulation

Material data Geometry data (cm)

Structure Density (kgf ) s2/cm4) (o
s
) 2)67 (E!05) Radius of tank (R) 2500

Young's modulus (E) 7)0 (E#05) Height of tank (H) 4000
(kgf/cm2)

Poisson's ratio (l) 0)3 Liquid height (H
L
) 3000

Liquid Denisity (kgf ) s2/cm4) (o) 4)6 (E!06) Structure thickness (h) 3



Figure 4. Finite element meshes for the structure and the liquid.

Figure 5. Estimated relative variations in natural frequencies with respect to the Young's modulus.*j*, First
mode; *d*, Second mode; *m*, Third mode; *.*, Fourth model.
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element meshes for the structure and the liquid, as shown in Figure 4, with uniform
three-dimensional 20-node cubic and 15-node tetrahedron elements. In particular, for
computational convenience in the conversion process of nodal values between two regions,
we made the same "nite element partition on the common liquid}structure interface. For
the computation of natural frequencies and modes, we employed the Lanczos and Jacobi
iteration algorithms.

6.1. SLOSHING MODE

Figure 5 shows the relative variations in the lowest natural frequencies with respect to the
Young's modulus of structure, where u

R
indicates natural frequencies obtained by the

rigid-tank sloshing model and du"u
F
!u

R
. The detailed numerical comparison is

contained in Table 2, where the #exible-tank sloshing model produces lower values than
those by the rigid-tank sloshing model. The di!erence between the #exible- and rigid-tank
sloshing models becomes considerable as the Young's modulus decreases or the natural
frequency increases. In particular we did not experience any noticeable di!erence in the two
lowest eigenmodes within the test range of the Young's modulus and the third and Fourth
modes for E*7]106 (kgf/cm2). Here, we note that the other parameters except for the
Young's modulus were assigned the "xed values given in Table 1.



TABLE 2

Variations of natural frequencies with respect to the Young+s modulus

Natural frequencies (rad/s)

Flexible-tank sloshing model
Rigid-tank Young's modulus (kgf/cm2)
sloshing

Model model 7)0e#01 3)5e#02 7)0e#02 7)0e#05 7)0e#08

1 0)82091 0)82091 0)82091 0)82091 0)82091 0)82091
(0%) (0%) (0%) (0%) (0%)

2 1)10484 1)10483 1)10484 1)10484 1)10484 1)10484
(0%) (0%) (0%) (0%) (0%)

3 1)33340 1)30911 1)32923 1)33382 1)33340 1)33340
(!1)822%) (!0)313%) (!0)038%) (0%) (0%)

4 1)44509 1)40389 1)43684 1)44054 1)44350 1)44509
(!2)851%) (!0)571%) (!0)318%) (!0)110%) (0%)
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The parametric e!ect of the liquid density on the #exible-tank sloshing model is presented
in Figure 6 and corresponding numerical data are listed in Table 3. Quite similar variations
to the previous results are observed. This is because the density increase implies a relative
softening of the structure sti!ness.

The relative variations in natural frequencies with respect to the structure thickness
are shown in Figure 7, where we observe that its e!ect on the sloshing mode is not
critical compared to the previous two parameters, the Young's modulus and the liquid
density. However, for the fourth mode, the variation increases as the thickness decreases
(see Table 4).

Figure 8 depicts mode shapes corresponding to the four lowest natural frequencies of the
horizontal sloshing motion of interior liquid.

6.2. BULGING MODE

As declared in equation (22), added-mass matrices become frequency-dependent when the
liquid free-surface sloshing is taken into consideration. Thus we need a non-linear
numerical technique to solve the frequency-dependent bulging mode. Here, we employ
a sort of predictor}corrector technique. According to this technique, we "rst compute
natural frequencies Muw@o

i
N corresponding to the bulging mode without free-surface sloshing

(i.e., the classical bulging model). For each uw@o
i

, we then compute the corresponding
added-mass matrix [M

add
(u

i
)] according to the numerical procedure presented in the

previous section. With the computed added-mass matrices, we "nally compute the natural
frequencies of the bulging mode with free-surface sloshing.

Figure 9 shows the comparative variations of total added mass mTOT
add

with respect to the
natural frequency. Here we see that the case with liquid free-surface sloshing results in
smaller total added masses, but the deviation from the case without sloshing diminishes
monotonically as the natural frequency becomes higher. This is accordance to the
sloshing-height decrease in proportion to the natural-frequency increase, and it implies
a weakening in the coupling e!ect between the liquid free-surface sloshing and the bulging



Figure 6. The estimated variations in the four lowest natural frequencies with respect to the liquid density.
*j*, First mode; *d*, Second mode; *m*, Third mode; *.*, Fourth model.

TABLE 3

Variations of natural frequencies with respect to the liquid density

Natural frequencies (rad/s)

Flexible-tank sloshing model
Rigid-tank liquid density (kgf s2/cm4)
sloshing

Model model 4)6e!08 4)6e!06 4)6e!03 4)6e!02 4)6e!01

1 0)82091 0)82091 0)82091 0)82091 0)82091 0)82091
(0%) (0%) (0%) (0%) (0%)

2 1)10484 1)10484 1)10484 1)10484 1)10484 1)10484
(0%) (0%) (0%) (0%) (0%)

3 1)33340 1)33340 1)33340 1)33224 1)32854 1)31491
(0%) (0%) (!0)087%) (!0)336%) (!1)387%)

4 1)44509 1)44509 1)44350 1)44115 1)43329 1)41735
(0%) (!0)110%) (!0)273%) (!0)817%) (!1)919%)

Figure 7. Estimated relative variations in the four lowest natural frequencies with respect to the wall thickness.
*j*, First mode; *d*, Second mode; *m*, Third mode; *.*, Fourth model.
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TABLE 4

Variations of natural frequencies with respect to the structure thickness

Natural frequencies (rad/s)

Flexible-tank sloshing model
Rigid-tank structure thickness (cm)
sloshing

Mode model 0)1 0)5 3)0 30

1 0)82091 0)82091 0)82091 0)82091 0)82091
(0%) (0%)(0%) (0%) (0%)

2 1)10484 1)10484 1)10484 1)10484 1)10484
(0%) (0%) (0%) (0%)

3 1)33340 1)33340 1)33340 1)33340 1)33340
(0%) (0%) (0%) (0%)

4 1)44509 1)44163 1)44288 1)44350 1)44509
(!0)239%) (!0)153%) (!0)110%) (0%)

Figure 8. Mode shapes of the horizontal sloshing motion: (a) "rst mode, (b) second mode,. (c) third mode and
(d) fourth mode.

Figure 9. Variations of the computed total added masses with respect to the natural frequency. *j*, with
sloshing; )))))))m))))))), without sloshing.
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mode, as inferred in the eigen-characteristic analysis. On the other hand, by comparing the
computed total added masses with the total liquid mass m

TOT
(m

TOT
"onR2H

L
/2"

135481 kgf s2/cm), their relative ratios are 61)7% for the case without sloshing and



Figure 10. Spectral variation of total added mass along the natural frequency.

TABLE 5

Comparison of natural frequencies of the bulging mode

Natural frequencies (rad/s)
Relative

Mode W/o sloshing uw@o
b

With sloshing uw@
b

variation (%)

1 7)21646 7)31779 1)405
2 11)65629 11)72005 0)547
3 14)43120 14)45429 0)160
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60)7}61)7% for the case with sloshing. It has been reported that the relative ratio of total
masses added to the structure increases as the relative liquid height H

L
/R increases; however

it does not approach 100% but shows a saturation. For more details on the theoretical
analysis, the reader may refer to Haroun [4].

Figure 10 presents the spectral variation of total added-mass with respect to the natural
frequency for which we computed added-masses by sequentially varying the natural
frequency starting from zero. For a reference purpose, actual frequency regions of sloshing
and bulging modes of the model tank are indicated. In fact, the added-masses in the
frequency region lower than the lowest bulging frequency u1

b
do not have physical meaning.

However, this plot is to examine the feature of the frequency-dependent matrix H
s

in
equation (13). As shown in the "gure, we see the singular behavior at u*"2)263 rad/s in the
sloshing mode region, and it resulted from the singularity of the matrix H

s
near the natural

frequency u*. This kind of singularity occurs also when one tries to analytically solve the
bulging natural frequencies of liquid-storage tanks. A representative example is given in the
work by Haroun et al. [5].

The comparison of three lowest natural frequencies Muw@
b

N and Muw@o
b

N of the bulging mode
between both cases is given in Table 5, where the variation means (uw@

b
!uw@o

b
)/uw@o

b
]100%.

Since a relatively smaller amount of added masses is obtained for the case with the liquid
free-surface sloshing, its corresponding natural frequencies are relatively higher. However,
the di!erence between both cases strictly decreases in proportion to the increase of natural
frequency. By comparing the numerical results in Tables 2}4 associated with the e!ect of
structure deformation onto the sloshing mode, we recognize the reverse frequency-wise



Figure 11. Mode shapes of the two lowest natural frequencies; (a) "rst mode and (b) second mode.

Figure 12. Comparative spatial distributions of component-wise nodal added-masses (for the "rst lowest
bulging mode): (a) aixal *j*, with sloshing;*m*, without sloshing and (b) xy-sectional } ) } ) }, with sloshing;
......, without sloshing.
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trend; that is, the relative variations in the bulging mode decrease while that in the sloshing
mode increases, as the natural frequency increases.

We present the computed mode shapes corresponding to two lowest bulging modes in
Figure 11, and we experienced no sensible di!erence between mode shapes obtained with
and without consideration of the liquid free-surface sloshing.

Figure 12 shows the comparative spatial distributions of component-wise nodal
added-masses for both cases. The nodal added masses refer to diagonal components in the
component-wise lumped added-mass matrix. From Figure 12(a) which shows the axial
distributions of the x-component m

x
of nodal added-masses (for u1

b
and h"03), we see the

noticeable di!erence in the distributions of both cases, particularly at the liquid free-surface.
The remarkable di!erence at the free-surface is directly dependent on whether the liquid
free-surface sloshing is taken into consideration or not. From the numerical experiment for
di!erent circumferential angles as well as y component m

y
, we experienced the same axial

distribution pattern for each case, even though the corresponding nodal added-mass
magnitudes are di!erent.

On the other hand, Figure 12(b) illustrates the xy-sectional distributions of m
x
and m

y
at

the axial location indicated in Figure 12(a). We note here that no added-mass exists in the
z direction according to the inviseid #ow assumption.
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7. CONCLUSIONS

This paper addressed the assessment of classical simpli"ed dynamic models, the
rigid-tank sloshing model and the bulging model without liquid free-surface sloshing, for
a convenient eigenanalysis of #uid}structure interaction problems. For this goal, we "rst
re"ned these simpli"ed models by taking into consideration two neglected e!ects, the
structure deformation on liquid sloshing motions and the liquid free-surface sloshing on
structure bulging vibrations.

For the re"nement of bulging model, we included the liquid free-surface sloshing into the
added mass computation, and for the re"ned sloshing model we derived the "nite element
numerical formulation including the structure deformation. According to the re"nement,
both eigenmodels become frequency dependent.

In order to investigate the additional structure-deformation e!ect onto the classical
rigid-tank sloshing model, we "rst carried out the qualitative analysis of the re"ned
numerical formulation. We obtained a relation showing the relative variation in added
masses that contains three major parameters, the Young's modulus, the liquid density and
the structure thickness. Through the parametric experiments for the quantitative variation
of sloshing-mode frequencies, the relative di!erence in natural frequencies between the
classical and the re"ned models prevails in proportion to the relative softening of structures
to interior liquids. On the other hand, such a variation becomes remarkable as the natural
frequency increases.

With the re"ned numerical procedure for added-mass matrices, we analyzed the
comparative frequency-wise variation of total added mass together with the comparative
spatial distributions of component-wise nodal added-masses.

Within the actual bulging-mode frequency range, the total added masses obtained by the
re"ned model are smaller than that by the classical model. However, this di!erence
diminishes with increase in natural frequency while it becomes considerable as the natural
frequency becomes lower. Within the sloshing-mode frequency range, the total added mass
exhibits a spurious behavior owing to the singularity of the matrix H

s
. In accordance with

this tendency of the added-mass variations, the re"ned model leads to relatively higher
frequencies compared to the classical model, but the natural frequencies of both models
approach each other as the natural frequency becomes higher.

On the other hand, from the comparison of spatial distributions of component-wise
nodal added masses, we observed a noticeable di!erence in axial distributions, particularly
at the liquid free- surface.
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